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Abstract. We investigate the leptonic decay amplitude of heavy pseudo-scalar mesons as well as the B to
D transition amplitude in the heavy quark limit, using the covariant formulation of light-front dynamics.
The explicit rotational invariance of this formalism enables us to recover the analytic results obtained
for these processes using the Bakamjian–Thomas construction in equal time dynamics, in the limit of an
infinitely heavy mass. The covariant formulation provides a very convenient and coherent framework for
calculating the 1/m corrections.

1 Introduction

The leptonic decay and semi-leptonic transition form fac-
tors of heavy mesons are a subject of particular interest for
several reasons. In the framework of the standard model,
they are directly proportional to matrix elements of the
CKM matrix, and therefore can serve as constraints on
their determination. This, however, implies that the un-
certainties coming from the calculation of the hadronic
transition amplitudes can be minimized as much as possi-
ble. This is indeed the case if one considers heavy mesons
containing c or b quarks or antiquarks. In that case, and
in leading order in 1/m, where m is the mass of the heavy
quark, several properties arise from the so-called heavy
quark symmetry [1,2].

Such a symmetry, which implies various sum rules, can
be used for instance to constrain the slope of the Isgur–
Wise function ξ(w) as w → 1 [3–7]. It is now well known
that such constraints can only be satisfied if the relevant
matrix elements are described covariantly. In other words,
one needs a coherent relativistic framework to describe the
initial and final state, as well as the electroweak operator.

Several attempts have been made in the past to satisfy
these constraints at least in 1/m order. Among them, the
construction of covariant amplitudes using the Bakamjian–
Thomas (BT) construction is the most widely used [8,9].
This construction however may have limitations in esti-
mating non-leading 1/m corrections. We would like to ad-
vocate in this article the use of light front dynamics (LFD)
to calculate in a systematic way the semi-leptonic decay of
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the heavy mesons. Some results are already known in the
standard formulation of LFD [3,10–12,7,13,14]. While the
numerical results, in leading 1/m order, in both the LFD
and the BT approaches are identical, an explicit compari-
son beween their results is not always possible because of
the lack of explicit covariance (i.e. also the lack of rota-
tional invariance) in the standard formulation of LFD.

Moreover, and this is the aim of the present study,
the lack of rotational invariance may lead to large non-
physical contributions to any approximate physical am-
plitude, as this is already known for electromagnetic form
factors [15–18]. In order to extract unambiguously the
physical form factors, we therefore use in the present work
the covariant formulation of LFD (CLFD), as detailed in
the review article of [19]. We apply our analysis to the
leptonic decay of B(0−) mesons, and to the semi-leptonic
transition B(0−) to D(0−).

The plan of this paper is as follows. We recall in Sect. 2
the general structure of the pseudo-scalar meson wave
function in CLFD. We calculate in Sect. 3 the leptonic me-
son decay constant, and in Sect. 4 the semi-leptonic tran-
sition form factor between two heavy mesons. We draw
our conclusions in Sect. 5.

2 Relativistic structure of scalar mesons
in CLFD

2.1 Covariant formulation of LFD

Among the various approaches to deal with relativity in
the description of bound states, we shall concentrate in the
following on light front dynamics. In the standard formu-
lation of LFD, the wave function of the system is defined



132 F. Bissey, J.-F. Mathiot: Pseudo-scalar heavy meson decays in covariant light front dynamics

on a plane characterized by the equation t+ z/c = 0. The
usual Schrödinger, equal time, formalism is easily recov-
ered by letting c go to infinity.

The formulation of relativistic systems in LFD has
many advantages. Maybe the most important one is the
absence of vacuum fluctuations. This has the important
consequence that a meaningful decomposition of the state
vector describing the system under consideration in terms
of Fock components of a definite number of particles is
possible. The number of Fock components to be consid-
ered in any practical calculation depends of course on the
dynamics of the system, and on the kinematical regime
one is interested in.

The most serious drawback of this formulation is how-
ever that the position of the light front t + z = 0 (with
c = 1) is not invariant by any rotation in the zx and
zy planes. Since these rotations change the position of the
light front, the associated generators should depend on the
dynamics and cannot be reduced to kinematical transfor-
mations [20]. This means in practice that one needs to
know the complete dynamics in order to write down the
general structure of a bound state of definite angular mo-
mentum. This means also that any electroweak operator
should have the same (dynamical) transformation prop-
erties in order to match those of the bound state wave
function. This is essential in order to guarantee that any
physical amplitude (or cross-section) does not depend on
the particular choice of the light front we start with.

One therefore needs an explicit procedure to exhibit in
a convenient way these dynamical transformations. This
can be achieved easily in the covariant formulation of LFD.
Our starting point is the invariant definition of the light
front by ω.x = 0, where ω is an (unspecified) light-like
four-vector (ω2 = 0). If one specifies a particular value
of ω, i.e. for instance ω = (1, 0, 0,−1), one recovers the
standard formulation of LFD.

This definition of the light front is explicitly invariant
by any four-dimensional rotation, or any three-dimensional
rotation and Lorentz boost. As a consequence, these trans-
formations become entirely kinematical, but ω-dependent,
and do not necessitate the knowledge of the dynamics of
the system to construct them explicitly. All the dynamics
is now described by the ω-dependence of the wave function
and the electroweak operator, in such a way that any phys-
ical amplitude should not depend on the particular posi-
tion of the light front, i.e. should not depend on ω, unless
approximations have been made. In that case – which is
almost always the case in practice – the explicit covariance
of the approach enables us to exhibit the ω-dependence of
the amplitude and to extract the physical part from the
non-physical, ω-dependent one, as we shall explain in the
following in the case of the decay amplitude and transition
form factors. All the details of this covariant formulation
can be found in [19].

2.2 The two-body wave function

Following the spirit of the constituent quark model, we
approximate the heavy meson wave function by its two-
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Fig. 1. Graphical representation of the two-body wave func-
tion on the light front characterized by ω. The broken line
corresponds to the spurion (see text)

body Fock component only. The state vector describing a
meson, of momentum p and light front “time ” σ = ω·x,
on the light front defined by ω, is thus given by [19]

φJλ(p) = (2π)3/2
∫

ΦJλ
j1σ1j2σ2

(k1, k2, p, ωτ)

×a†
σ1
(�k1)a†

σ2
(�k2)|0〉δ(4)(k1 + k2 − p− ωτ)

× exp(iτσ)2(ω·p)dτ d3k1

(2π)3/2√2εk1

d3k2

(2π)3/2√2εk2

, (1)

in an obvious notation, and εk = (�k2 +m2)1/2. Note that
the four-momentum conservation can be written δ(4)(k1+
k2 − p − ωτ). This originates from the general transfor-
mation properties of the state vector with respect to the
generators of the Poincaré group [19]. In the particular
case where ω = (1, 0, 0,−1), the delta-function δ(4)(k1 +
k2 − p − ωτ) gives, after integration over τ , the standard
conservation laws for the (⊥,+)-components of the mo-
menta, but does not constrain the minus-components. For
convenience, it is useful to represent this wave function by
the diagram of Fig. 1. The dashed line, called a spurion,
of momentum ωτ , is just a systematic way to take care
of the particular four-momentum conservation. It enters
also naturally in the diagrammatic rules associated with
CLFD, which generalize the Weinberg rules [19].

From (1) one can see that the wave function depends
on the orientation of the light front, from its argument
ωτ , where τ is homogeneous to an energy. This latter is
entirely fixed by the four-momentum conservation and the
on-mass-shell conditions for each particle. The dependence
of any Fock component on ω is very natural. Indeed any
off-energy-shell amplitude is related to the S-matrix de-
fined on a finite light front plane in the interaction region
and therefore depends on its orientation. The bound state
wave function is always an off-shell object (τ 	= 0 due to
binding energy). Therefore it also depends on the orien-
tation of the light front plane. This property is not a pe-
culiarity of the covariant approach. The covariance allows
one however to parametrize this dependence explicitly.

The general transformation properties of the wave
function under a four-dimensional rotation g is given
by [19]
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ΦJλ
j1σ1j2σ2

(gk1, gk2, gp, gωτ) =∑
λ′σ′

1σ′
2

D
(J)∗
λλ′ {R(g, p)}D(j1)

σ1σ′
1
{R(g, k1)}D(j2)

σ2σ′
2
{R(g, k2)}

×ΦJλ′
j1σ′

1j2σ′
2
(k1, k2, p, ωτ). (2)

Here D(J)
λ′λ{R(g, p)} is the matrix of the rotational group

and R(g, p) is the rotation operator:

R(g, p) = L−1(gp)gL(p), (3)

where L(p) is the Lorentz transformation corresponding
to the velocity �v = �p/p0. The Euler angles that determine
the rotation R(g, p) can be expressed in terms of the mo-
mentum p and the parameters of the transformation g.
The explicit expression of the Euler angles in terms of g
and p will however never be needed.

The wave function Φ can be decomposed in terms of all
the possible independent spin structures compatible with
the quantum numbers of the meson. In the particular case
of pseudo-scalar mesons we are interested in, we can write

Φ =
1√
2
ū(k2)

[
A1 +A2

ω/

ω · p
]
γ5v(k1). (4)

As we can see in this expression, the scalar wave func-
tion has two components. The first one, A1, gives rise to
the usual Schrödinger wave function in the non-relativistic
limit. The second one, A2, has a relativistic origin and has
no equivalence in the non-relativistic approach.

In order to make a close connection to the non-relati-
vistic limit, it is convenient to make use of another set
of variables. We denote by �k the momentum which corre-
sponds, in the c.m. system where �k1+�k2 = 0, to the usual
relative momentum between the two particles. Note that
this choice of variable does not assume, however, that we
restrict ourselves to this particular reference frame. We
denote by �n the unit vector in the direction of �ω in this
system. Note also that due to the four-momentum conser-
vation law, the total momentum �p of the system in this
reference frame is not zero. In terms of these variables,
the wave function takes a form very similar to the non-
relativistic case. Making the appropriate Lorentz transfor-
mations, we get

�k = L−1(P)�k1 = �k1 −
�P√
P2

[
k10 −

�k1·�P√
P2 + P0

]
, (5)

�n = L−1(P)�ω/|L−1(P)�ω| =
√

P2L−1(P)�ω/ω·p, (6)

where
P = p+ ωτ = k1 + k2, (7)

From these definitions, it follows that under a rotation
and a Lorentz transformation g of the four-vectors from
which �k and �n are formed, the vectors �k and �n undergo
only rotations:

�k′ = R(g,P)�k, �n′ = R(g,P)�n, (8)

where R is the rotation operator (3). Therefore �k2 and �n·�k
are invariants.

One can see from (2) that the relativistic wave func-
tion, in contrast to the non-relativistic one, is transformed
in each index by different rotation matrices. It is there-
fore convenient to use a representation in which the wave
function is transformed in each index by one and the same
rotation operator R(g,P), rotating, according to (8), the
variables �k and �n. We define the wave function in this new
representation as follows:

ΨJλ
j1σ1j2σ2

(k1, k2, p, ωτ) ≡∑
λ′,σ′

1,σ′
2

D
(J)∗
λλ′ {R(L−1(P), p)}D(j1)

σ1σ′
1
{R(L−1(P), k1)}

×D(j2)
σ2σ′

2
{R(L−1(P), k2)}ΦJλ′

j1σ′
1j2σ′

2
(k1, k2, p, ωτ), (9)

where, e.g., R(L−1(P), p) is given by (3) with g = L−1(P).
The transformation properties of the wave function in

the new representation are thus

Ψλ
σ1σ2

(gk1, gk2, gp, gωτ) =∑
λ′,σ′

1σ′
2

D
(J)∗
λλ′ {R(g,P)}D(j1)

σ1σ′
1
{R(g,P)}

×D(j2)
σ2σ′

2
{R(g,P)}Ψλ′

σ′
1σ′

2
(k1, k2, p, ωτ). (10)

This equation, together with (8), shows that in this
new representation and in the variables �k, �n the relativis-
tic wave function transforms exactly as a non-relativistic
wave function under a rotation R. This strongly simplifies
the spin structure of the relativistic wave function, mak-
ing it as close as possible to the non-relativistic one. The
only difference is in the dependence of the wave function
on the extra variable �n.

In terms of these variables, we can write the pseudo-
scalar meson wave function as

ψ(�k, �n) =
1√
2
w†

2

(
g1 + i

�σ · (�n× �k)

|�k|
g2

)
w1, (11)

where w1 and w2 are the usual two-component Pauli
spinors. The two functions g1 and g2 are scalar functions
of two invariants. It is convenient to choose �k2 and �k.�n.
The relation between the components in both represen-
tations can easily be found using the explicit expression
of the Dirac spinors [19]. In the non-relativistic limit, the
second component proportional to g2 disapears, and the
wave function g1 tends to the non-relativistic Schrödinger
wave function which we shall denote by φNR(�k2). It de-
pends on �k2 only.

The equation for the wave function is shown graphi-
cally in Fig. 2. It is the analogue, for a bound state, of the
Lippmann–Schwinger equation for a scattering state. For
many practical applications, it may be useful to express
this equation in terms of the variables �k and �n, i.e. ex-
press the wave function in terms of Ψλ

σ1σ2
(k1, k2, p, ωτ) ≡
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Fig. 2. Diagrammatical representation
of the self-consistent equation deter-
mining the two-body relativistic wave
function

Fig. 3. Leading order contribution to the leptonic decay am-
plitude of pseudo-scalar heavy mesons

Ψλ
σ1σ2

(�k, �n). In the simple case of a scalar particle, we have[
4(�k2 +m2) −M2

]
ψ(�k, �n)

= − m2

2π3

∫
ψ(�k′, �n)V (�k′,�k, �n,M2)

d3k′

εk′
. (12)

The integration variable �k′ in (12) is defined analogously
to �k in (5):

�k′ = L−1(P ′)�k′
1, (13)

where P ′ = k′
1+k′

2. The kernel V of this equation (shaded
area on the right side of Fig. 2) depends on the dynamics
of the system.

3 The B meson decay constant

As a first application of CLFD to heavy quark systems,
we shall concentrate in this section on the decay constant
of heavy pseudo-scalar mesons, like B(0−). The leading
order contribution is indicated in Fig. 3. According to the
diagrammatical rules associated with CLFD [19], the spu-
rion line connects two successive vertices in the light front
time ω·x.

The decay constant is thus deduced from the general
structure of the exact current Jρ by

〈0|Jρ|0−〉 = fP pρ, (14)

where pρ is the momentum of the meson. Since we re-
strict ourselves to the first two-body Fock component of
the state vector (1), and evaluate the leading contribu-
tion to the current as given in Fig. 3, the hadronic matrix
element we calculate is approximate, and can therefore
depend a priori on the orientation of the light front on
which the wave function is defined. Since our formulation
is explicitly covariant, we can immediately write down the

structure of our approximate matrix element, which for
simplicity we shall also denote by 〈0|Jρ|0−〉. We have thus

〈0|Jρ|0−〉 = fP pρ +Bωρ. (15)

B is a non-physical contribution which should be disan-
tangled from the physical contribution, fP , to the exact
decay constant. In this case, this can simply be done by
multiplying both sides of (15) by ωρ so that

fP =
〈0|ω·J |0−〉

ω·p . (16)

With the current given diagrammatically by Fig. 3, we
have [19]:

〈0|Jρ|0−〉 =
√
Nc√
2

∫
d3k1

(2π)32εk1

1
1 − x

×Tr
[
(mq − k/1)

(
A1 +A2

ω/

ω · p
)
γ5(mb + k/2)γργ5

]
, (17)

with x = ω·k1/ω·p, and where Nc is the number of colors.
The masses of the heavy quarks are denoted by mb and
mc, and mq is the mass of the light quark.

We shall evaluate the decay constant in the infinite
quark limit. According to the usual procedure in this limit,
we shall make the following approximations:

mb,mc,MB ,MD → ∞ and mq � mb,mc,MB ,MD,

with
mb

MB
→ 1,

mc

MD
→ 1.

From this we can deduce immediately, with p + ωτ =
k1 + k2:

τ ≈ m2
b −M2

B

2ω · p → 0. (18)

We thus find that in this limit, the reference frame, where
�p = 0 (rest frame of the initial meson), is identical to the
center of mass frame of the two particles of momentum �k1

and �k2 (�k1+�k2 = 0). We shall denote by �k the momentum
of the light antiquark in this frame, as defined in (5).

In this limit, the fraction of the momentum carried by
the light antiquark, and given by x, is thus

x =
εk

mb

(
1 − �n.�k

εk

)
, (19)
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with εk = (�k2+m2
q)

1/2. In order to evaluate the contribu-
tion coming from the relativistic component A2 of the two-
body wave function, we can estimate this component in
perturbation theory, as done in [21] for the deuteron wave
function. Using (12), we start from the non-relativistic
wave function ΨNR on the r.h.s. of the equation, as de-
fined by

ψ(�k, �n) =
1√
2
w†

2

(
φNR(�k2)

)
w1, (20)

and calculate the complete, two-component, wave func-
tion Ψ(�k, �n) on the l.h.s., assuming a particular model for
V . In the infinite mass limit however, since τ → 0, the
component A2 of the relativistic wave function also goes
to zero. It can therefore be neglected in this limit.

The component A1 is then calculated by comparing
the two decompositions (4) and (11). It is given by

A1(�k2, �n.�k) =
g1(�k2, �n.�k)√
2mb

√
εk +mq

, (21)

with the normalization [19]∫
d3k

(2π)32εk
|g1(�k2, �n.�k)|2 = 1. (22)

Note that the normalization incorporates a factor 2εk as
compared to the standard non-relativistic normalization.

By identifying g1 with the non-relativistic wave func-
tion φNR(�k2), and with the definition of fP in (16), with
(17), we finally get

fP =
√
Nc

√
2

MB

∫
d3k

(2π)3
√
2εk

φNR(�k2)
√
εk +mq

εk
.

(23)
With the normalization (22) this expression is identical to
the one obtained in [9] using the Bakamjian–Thomas con-
struction. Relativistic corrections to the decay constant
can indeed be large, even in the infinite mass limit, since
they involve εk = (�k2 + m2

q)
1/2, where mq is the light

quark or antiquark mass. They lead to a reduction of fP .
Numerical results using various realistic potentials can be
found in [9].

4 The semi-leptonic transition form factors

4.1 Formulation of the amplitude in CLFD

The exact physical amplitude for the semi-leptonic transi-
tion form factor B → D+lνl is in the Fermi approximation
usually decomposed as follows:

M =
GfVbc√

2
〈0−|Jρ|0−〉J lep

ρ , (24)

where J lep
ρ is the standard leptonic current.

The hadronic matrix element is further decomposed in
terms of the f+ and f− form factors, according to [22]

〈0−|Jρ|0−〉 = (p+ p′)ρf+ + (p− p′)ρf−. (25)

In the heavy quark approximation, a more convenient
parametrization is usually considered:

〈0−|Jρ|0−〉 =
√
MBMD [(U + U ′)ρh+ + (U − U ′)ρh−] ,

(26)
where MB and MD are the masses of the initial and final
mesons, and U and U ′ are the four-velocities defined by

U =
p

MB
and U ′ =

p′

MD
. (27)

In this equation, p and p′ are the momenta of the initial
and final mesons respectively. This decomposition is the
most useful since in the heavy quark approximation the
form factor h− must be zero, so that we have to deal
with only one physical form factor. This form factor is a
function of Q2 = (p − p′)2. In the heavy quark limit, it
is more convenient to express Q2 in terms of the variable
η = U · U ′, with

Q2 = M2
B +M2

D − 2MBMDη. (28)

The form factor h+ is normalized to one at the point of
zero recoil (η = 1), and its slope near 1 is the so-called
Isgur–Wise function ρ2:

h+(η) = 1 − ρ2(η − 1) +O
[
(η − 1)2

]
. (29)

As we already mentioned, the exact physical transition
amplitude defined on the light front should of course not
depend on the particular choice of its orientation, i.e. on
ω. But this is not the case in any approximate calcula-
tion. The explicit covariance of our approach enables us,
however, to parametrize this dependence explicitly. The
approximate amplitude is thus given by

〈0−|Jρ|0−〉 =
√
MBMD [(U + U ′)ρh+

+ (U − U ′)ρh−] +Bωρ, (30)

where B is a non-physical form factor which should be
zero in any exact calculation. It is now easy to invert this
decomposition in order to extract the physical form factors
h+ and h− from the amplitude. Using the following scalar
products, and with α = ω · U ′/ω · U :



X = (U + U ′) · J = 2
√
MBMD(1 + η)h+

+(1 + α)(ω · U)B,

Y = (U − U ′) · J = 2
√
MBMD(1 − η)h−

+(1 − α)(ω · U)B,

Z =
ω · J
ω · U =

√
MBMD [(1 + α)h+ + (1 − α)h−] ,

(31)
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Fig. 4. Leading order contribution to the semi-leptonic B to
D decay amplitude

we have


√
MBMDh+ =

1
4(1 + α2 − 2αη)

[(1 − α) [(1 − α)X
−(1 + α)Y] + 2(1 + α)(1 − η)Z] ,

√
MBMDh− =

1
4(1 + α2 − 2αη)

[(1 + α) [−(1 − α)X
+(1 + α)Y] + 2(1 − α)(1 + η)Z] .

(32)
In leading order (spectator model), the amplitude is given
by the diagram of Fig. 4. As already mentioned in Sect. 3,
the spurion line connects two successive vertices in the
light front “time” ω.x. The matrix element of the current
Jρ is then easily evaluated using these rules. It is given by

〈0−|Jρ|0−〉 = 1
2

∫
Tr
[(

A′
1 +A′

2
ω/

ω · p′

)

×(mc + k/
′
2)γρ(mb + k/2)

(
A1 +A2

ω/

ω · p
)
(mq + k/1)

]

× 1
1 − x

1
1 − x′

d3k1

(2π)32εk1

, (33)

where x and x′ are defined by

x =
ω·k1

ω·p and x′ =
ω·k1

ω·p′ . (34)

In (33), Ai (A′
i) are the components of the initial (final)

meson wave function.

4.2 Calculation of the form factors
in the heavy quark limit

Using the matrix element of the current (33), and the def-
inition of the form factors h+, h− from (32) in terms of

X ,Y,Z in (31), we can easily calculate these form factors
in terms of the invariant scalar products of the various mo-
menta involved in the process. We evaluate them in the B
meson rest frame, in terms of the variable �k defined in (5).
We recall that in the infinite quark limit, the rest frame
of the B meson is also the c.m. frame of the Qq̄ system
(�k1 + �k2 = 0). We shall also consider particular orienta-
tions of the light front position ω. For the calculation of
electromagnetic form factors, we usually take ω·q = 0 [19],
which corresponds to q+ = 0 in the standard formulation
of LFD. This choice cannot be done here because Q2 > 0.
As a convenient choice, which however keeps ω undeter-
mined, we shall take �ω·�q = 0 in the rest frame of the B
meson. With these conditions, it is easy to evaluate all
the necessary scalar products in terms of k and η. With
p·p′ = p0p′0 = MBMDη we have

p′0 =
MBMDη

p0 = MDη and
ω·p′

ω·p =
p′0

p0 =
MD

MB
η, (35)

so that in the infinite mass limit we have α ≡ η. As already
seen in Sect. 3, the momentum fraction carried by the
light quark, given by x as defined in (34), tends to zero as
1/MB in the infinite mass limit, and similarly for x′. The
parameters τ and τ ′, as indicated in Fig. 4, are also zero in
this limit, as already seen in Sect. 3. In the B rest frame,
we have �U = 0, U0 = 1 and U ′0 = η, |�U ′| = (η2−1)1/2. We
have therefore U ·k1 = εk and U ′·k1 = εk′ = ηεk − (η2 −
1)1/2|�k|cos(φ), where φ is the angle between �k and �U ′ or
�p′. This latter relation enables us to express �k′2 = ε′2

k′ −m2
q

in terms of η and the integration variable �k.
In the approximation where we neglect the relativistic

component A2 of the meson wave function (exact approx-
imation in the infinite quark limit, see our discussion in
Sect. 3), we finally get


h+ =
√
MBMD

∫
A1A

′
1

[
εk +mq −

√
η − 1
η + 1

|�k| cos(φ)
]

× d3�k

(2π)3εk
,

h− = 0.
(36)

As we already mentioned, we find that h− is exactly zero,
as it should. In the heavy quark limit, we have the relation
(21) between the component A1 and the non-relativistic
wave function φNR(�k2) (when g1 is identified with φNR),

and similarly for A′
1 in terms of φNR(�k′2). Moreover, the

Luke theorem is nicely satisfied. Indeed, in the limit of
zero recoil (η = 1), the h+ form factor reads, with the
components A1 and A′

1 given by (21),

h+ =
√
MB

mb

MD

mc

∫
g2
1

d3�k

(2π)32εk
. (37)

In the heavy quark limit, MB/mb → 1 and MD/mc → 1,
so that, with the normalization condition (22), the h+
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form factor is equal to 1 in the zero recoil limit. The ana-
lytic expression we then find for h+ is identical to the one
obtained in [6] using the Bakamjian–Thomas construction.
Again relativistic corrections can be large since they in-
volve εk and the light quark or antiquark mass.

5 Concluding remarks

Contrary to the old, and naive, belief that processes in-
volving heavy quarks like c or b can be treated in a non-
relativistic framework, it is now well accepted that a rel-
ativistic treatment of the decay and transition amplitude
of heavy mesons is necessary.

We have shown in this work that a very convenient
relativistic approach is provided by the covariant formula-
tion of light-front dynamics. The formulation of the bound
state wave function on the light front is necessary in or-
der to give a physical sense to the constituent quark model
which describes the mesons in terms of a two-body (quark–
antiquark) bound state. The explicit covariance of our ap-
proach is then a powerful tool to make the connection
between the relativistic two-body wave function and the
non-relativistic Schrödinger wave function trivial.

As a starting point, we have investigated in the present
work the leading 1/m contribution to the leptonic decay
constant of B mesons, and the semi-leptonic B to D tran-
sition form factor. In this limit, we analytically recover
the results obtained in the Bakamjian–Thomas construc-
tion in equal time dynamics, in a very transparent way.

In leading 1/m order, we recover also results obtained
in the standard formulation of LFD [10–12,?,14]. This is a
check that, in this limit, the calculations of LFD, as well as
in the Bakamjan–Thomas construction in the equal time
formalism, are exact. Therefore, no non-physical contri-
butions arising from the lack of rotational invariance in
the standard formulation of LFD can arise. This is how-
ever not the case if the 1/m corrections are included. Our
covariant formulation of LFD is a very convenient, and
systematic, way to have control over these non-physical
contributions.

Corrections to the infinite mass limit can arise from
several sources. First of all, they can come from relativistic
corrections to the kinematics. These corrections are triv-
ial to incorporate in a relativistic framework. The second
type of corrections involves relativistic corrections to the
two-body bound state wave function. As we have seen,
the relativistic wave function of a pseudo-scalar meson
has two components. Our formalism enables us to take
into account the contributions from these two components,
as given in (5) for instance. This is not possible in the
Bakamjian–Thomas construction which starts from a sin-
gle non-relativistic wave function.

The most difficult contribution to evaluate will cer-
tainly be the dynamics which generate both the two-body
wave function but also the electroweak operator. At that
level, one would have to assume a model to estimate these
corrections. The one-gluon exchange is probably the most
suited. It has already been applied in CLFD to estimate
the two components of the pion wave function in the

asymptotical region [19]. It can be applied as well for the
processes under consideration in this work.
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